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Abstract

This paper proposes a novel solution of route 
recommendation which makes recommendations of 
potential next-stops to the users based on their previous 
wandering behaviors. The proposed recommendation 
method matches the user’s current wandering behavior with 
the set of popular route patterns. Sequential pattern mining 
methods are used to extract the popular route patterns 
from a large set of historical route database collected from 
previous users. A complete example is used to verify the 
effectiveness of the proposed solution.
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1   Introduction

Planning a route between two any given locations is 
the main feature of many navigational applications: such 
as the ever-popular portable/vehicle GPS navigational 
devices. These applications take route planning as a 
classical problem of finding the shortest path between two 
vertexes on a graph. There are many shortest-path finding 
algorithms, such as Dijkstra’s algorithm [4], and its variants 
A* search algorithm [7], D* search algorithm [13], etc. 
which can produce route plans efficiently. However, not 
every case of traveling involves only one destination. This 
research looks into a different kind of traveling behavior 
that involves multiple destinations -- casual wandering. 

This research is motivated by the need to make 
recommendations for casual wanderers, who travels 
between a series of locations attracting to them. Examples 
of casual wandering behavior can be found in small touring 
activities such as museum going, gallery visiting, zoo 
exploring, or as big as an excursion in a national park, or 
a day trip in a city tour. Travelers in these cases are more 
concerned about visiting the right places -- the places 
they like. On the other hand, they care less about how 
to minimize the time or distance of traveling, although 
reasonable economy is expected (such as no wasteful 
traveling of zigzagging).

The basic strategy of making route recommendation is 
to extract popular route patterns from a large route database 
and recommend the route patterns whose prefixes are most 

similar to the active user's current route. The underlying 
assumption of this strategy is that those who agreed in the 
past tend to agree again in the future, so if the active user's 
route is similar to the prefix of a popular route pattern, then 
there's a good chance the active user will follow the rest of 
the popular route pattern.

The goal of this research is to (1) identify an approach 
to extract popular route patterns from a historical route 
database and (2) to devise a method of finding the top-N 
recommendations via popular route pattern most similar to 
the active user's route, effectively and efficiently.

2   Recommender System in Sequential 
Context

Making recommendations is also the main feature 
of a large variety of applications called recommender 
systems which are achieving widespread success in 
E-Commerce nowadays. Examples of such applications 
include recommending books, CDs and other products 
at Amazon.com [10], movies by MovieLens [11], pre-
detect fraud report by accounting [8] and news at VERSIFI 
Technologies [3]. 

Recommender systems are usually classified into 
two categories, based on how recommendations are made 
[2]: content-based recommendations and collaborative 
recommendations. Content-based systems recommend 
items similar to those that a user liked in the past [9] while 
collaborative recommender systems (or collaborative 
filtering systems) try to predict the preference of items 
for a particular user based on the items previously rated 
by other users [5]. Typical examples include the book 
recommendation system from Amazon, the PHOAKS 
system that helps people find relevant information on the 
WWW [14] and the Jester system that recommends jokes [6].

The method being proposed to solve the route 
recommendation problem is inspired by the collaborative 
methods, in that it also tries to identify the previous users 
that share the same choice pattern with the active user, and 
then recommend the next choice made by those previous 
users to the active user. However, most of the current 
collaborative recommender systems do not consider the 
order of choices made by the users, while sequential order 
is a crucial factor in the route recommendation problem. 
This issue will be discussed in details in Section 3.
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There are a number of recommender systems that take 
the order of user’s choices into account. Shani, Brafman 
and Heckerman (2005) view the recommendation process 
as a sequential decision problem and propose using 
Markov decision processes (a well-known stochastic 
technique for modeling sequential decisions) for generating 
recommendations [12]. Tseng and Lin (2006) use n-gram 
(another derivative from the Markov chain model) based 
sequential pattern mining techniques to mine the mobile 
user's web usage sequence, aligned with the location 
sequence where the user uses the web [15]. Although their 
objective is to predict the next user request and the next 
location, to reduce mobile web surfi ng latency, their work is 
strongly related the recommender system. After all, making 
recommendations is to predict what users like.

3   Scenario of Bar Tour Guide

The motivation of this research is to find a solution 
for the Bar Tour Guide application. The main objective 
of the application is to recommend bar tour routes to its 
users. A typical scenario of the Bar Tour Guide application 
usage is as follows. The user carries the Bar Tour Guide 
handheld device as setting out on a tour. The device 
constantly monitors the user's routing activities. The user 
will find the first bar by himself/herself (the application 
will not make recommendation until the user has made 
the first choice; more discussion later in the chapter). As 
soon as the user fi nishes the drinking and is stepping out of 
the fi rst bar, the Bar Tour Guide will start the calculation, 
and presents a list of top-N next popular bar that are most 
likely favored by the user. The user may or may not take 
the recommendation, so the next time the user issues a new 
request for recommendation, the system will recalculate the 
recommendations based on the most up-to-date user route.

For example, Maz is bar touring in downtown Toronto 
(see Figure 1 for a map of some bars and pubs in that area, 
and Maz’s route on the map). He fi rst visits G, then A, and 
now he wonders which one to go next. So he pulls out his 
GPS iPhone, which is running the Bar Tour Guide program. 
The system scans a list of popular bar tour routes, and 
discovers that many previous bar tour goers, who drank 
at G then A, would pick E as the next hop. Therefore, E 
becomes the recommendation for Maz. 

The problem as how to get from one stop to the next 
in the route on the street level can be addressed with 
conventional navigational tools, and thus is out of the scope 
of this paper.

Figure 1 Bar Touring in Downtown Toronto

4   Issues Needed to Solve

First, let us defi ne what a route is. Since we are mostly 
concerned about the choices made by the bar tour goers, so 
a route can be represented as an ordered list of locations. 
We are also only interested in a number of specifi c types of 
locations, referred to as signifi cant locations (in this case, 
drinking establishments). In other words, if the user drops 
into a café, a flower shop, during his/her bar tour, those 
stops will not be recorded in his/her route.

Formally, signifi cant locations Λ is a set of predefi ned 
geo positions of significant interest, such as the geo 
positions of all bars in a city in the case of bar touring. The 
member of Λ is denoted as a 3-tuple (latitude, longitude, 
name). A user route routeuserID is an ordered list of locations, 
denoted by the form 〈λ 1 λ 2 … λ n〉, where λ j Ì Λ. A sequence 
with length k is referred to as a k-sequence.

The objective of any recommendation problem is to 
predict what the user likes. The route recommendation 
problem, presented by the Bar Tour Guide application, is 
unique from other conventional recommender system, in 
that it needs to predict not only what the user likes, but also 
in what order.

Many recommender systems, especially those that 
follow the collaborative approach, exploit the observation 
that like-minded people behave similarly, and thus often 
make similar decisions again. The basic strategy of the 
solution being proposed follows the same line of thinking. 
It takes the following three steps:
1. Look up recurring behavior patterns as what the previous 

users have chosen to visit, and in what order.
2. Compare the current active user’s behavior against 

the patterns discovered in step one, identify those 
patterns that matches the current user. Obviously the 
previous users exhibited such behavior patterns share 
common preference profi les with the active user, hence 
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what locations they visited next can be presented as 
recommendations as those locations would be very likely 
preferred by the active user as well.

3. There is often more than one recommendation. To avoid 
bombarding the active user with too many options, the 
system should rank each recommendation according to 
some certain scheme, to help the user to decide which 
one to take.

Given a database Θ  of routes, and an active user route 
routeuserID, and according to the three-step strategy, the route 
recommendation problem can be divided into three research 
issues:
1. how to extract popular route patterns from the database Θ ;
2. how to generate recommendations from the popular route 

patterns; and,
3. how to rank the relevancy of the recommendations to the 

active user given his/her route, routeuserID?

5   Sequential Routing Patterns

Most current recommender systems consider patterns 
as sets of commonly chosen items. The order of the items 
in a set is deemed to be irrelevant. Non-sequential pattern 
based recommender systems are very popular in product 
recommendation, such as books, music, movies, etc. In 
these cases, the involved effort to acquire such products 
makes little influence on the user’s decision making and 
thus often ignored.

The case is different for route recommendation because 
there is a cost of traveling incurred on the users moving 
from one location to the next. This cost will add up as 
the users travel through a number of locations, and thus 
the total traveling cost is determined by the visiting order 
of these locations. As such, users are no longer making 
decisions solely based on what they like, but also the cost 
involved in traveling as well. More precisely, the thinking 
process now becomes:
1. What do I like to visit next?
2. Is it too far? Do I like it so much that I’m willing to 

travel that far?
3. Is it in my general travel direction? (to keep the total 

cost down, a common strategy is to move in a constant 
direction)

Without considering the sequential order, the pattern 
will not be able to capture the decision making process 
behind the user’s behavior, and thus will failed to fi nd the 
real like-minded users and present recommendations that’s 
out of context.

Figure 2 illustrates a typical case where the simple 
preference-oriented recommender systems would have 
failed. Two users have been traversing the same set of 
locations 〈B C D E 〉, but in opposite directions. The simple 
preference-oriented recommender systems will consider 

the two users as being like-minded, and will recommend 
choice of the next destination of each user to the other (i.e., 
A to User #1, and F to User #2), which does not make sense 
to either given their context.

Figure 2 Preference-Oriented vs. Sequential Method

In summary, route patterns must be sequential. Given 
routes are sequences, route patterns should be common sub-
sequences of the original routes.

What is sub-sequence? Shani, Brafman and Heckerman 
(2005) and Tseng and Lin (2006) both seek to extract 
correlation between users by examining the sub-sequences 
of the users’ action sequences in specific problems [12]
[15]. Their methods are both based on Markov chain 
models, more specifically the n-gram model, which is a 
type of probabilistic model for predicting the next item in 
a sequence. An n-gram is a sub-sequence of n items from a 
given sequence. Formally, a sequence Si’ = 〈si1’ si2’ ... sin’ 〉 
is said to be a sub-sequence of an original sequence Si = 〈si1 
si2 ... sim〉, where n ≤ m, if there exists a strictly increasing 
sequence of indices, namely j1 < j2 < ...< jn, such that si1’ = 
sij1, si2’ = sij2, …, sin’ = sijn.

Sub-sequence is an exact fragment of the original 
sequence. However, focusing only on local fragments, we 
would loose sight of patterns that span non-consecutively 
across the original sequences. For example, 〈A B C 〉 and 
〈A D C 〉 are routes that do not share any consecutive sub-
sequences and thus will be dismissed by any Markov chain 
model as not having any connections between them. And 
yet that’s not true, as they both contain A and C, and in 
the same order. That indicates there is some connection 
between them. The two users who generated these two 
routes share something in common. In this case, 〈A C 〉 is a 
common pattern occurred in both routes.

Sequential patterns that occur non-consecutively in 
original sequences are better media to capture the common 
features of those sequences. Figure 3 demonstrates the 
power of non-consecutive sequential patterns. It depicts 
two user routes. User 1 starts from A, and after visiting 
an arbitrary number of locations, D, E,  and F, User 1 
arrives at G. User 2 starts from H, and then D, E, F, I 
consecutively. Obviously their routes have a common 
sequence fragment 〈D E F 〉. In the example, there are two 
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routes sharing a common fragment 〈D E F 〉. Since equal 
number of users visit 〈D E F 〉, but end up in different 
destination, the Markov chain model cannot determine the 
probability difference between the two routes. If we expand 
our visual scope to the entire bodies of both routes, we can 
then discover the correlations between H and I, A and G.

Figure 3 Sequence Fragments vs. Sequential Patterns

The relaxation of the consecutiveness constraint gives 
rise to a new issue. Suppose A and G are two locations 
so far apart that no users who are currently visiting A, 
would make G as their next destination. Here User 1’s 
route route1 = 〈A …. G 〉 starts from A, passes a number of 
other locations and fi nally ends at G as Figure 3 shows. By 
defi nition, 〈A G 〉 is a sub-sequence of route1, and thus has 
a chance of becoming a route pattern. This is in contrast 
to the fact that no one would travel directly from A to G, 
and thus not a faithful refl ection of the reality. As such, a 
constraint on distance between adjacent elements is needed 
to ensure the route pattern itself is a possible route. The 
upper limit of the distance between adjacent elements of a 
pattern is a user-defi ned parameter, referred to as maximal_
distance.

Summarizing the above discussion,  a routing 
pattern can be defined as a recurring sub-sequence with 
significant frequency in the routing sequence database. 
The significance of a routing pattern is measured by its 
support. Given a database Θ  = {S1, S2, ..., SN} that contains 
N sequences, the support of a routing pattern is defi ned as

  (1)

A routing pattern is said to be popular, or frequent, 
if its frequency of occurrences in the database is no less 
than a certain user-defined minimum support (or referred 
to as the min_sup). For example, in a database which has 
the following three routes: 〈A B C D〉, 〈E B C F 〉, 〈H I J 〉, 
with minimum support of 50%, the route pattern 〈B〉, 〈C 〉, 
〈B C 〉 are all popular since they appear two times out of 3. 
A routing pattern is said to be maximal, if it is not a sub-

sequence of any other popular routing patterns. In the above 
example, 〈B C 〉 are maximal, while 〈B〉, 〈C 〉 are not.

6   Recommendation Rules

After we find the patterns, we need to connect the 
active user with previous users through route pattern 
matching and generate route recommendations from the 
matching route patterns.

The solution to the fi rst task is straightforward. Since a 
number of previous users are said to be like-minded if their 
routes contain the same route pattern, then in the same line 
of thought, an active user whose route also contains this 
pattern will have a strong connection with these users as 
well. When a route pattern is found contained in an active 
user route, it is said to be a match to the active user route.

With a number of previous user found to be like-
minded to the active user, the next step is to find out 
suitable next-stops for recommendations among those 
visited by this group of previous users, while not yet visited 
by the active user. More importantly, the suitableness of a 
next-stop follows these criteria:
1. The next-stop should be visited by a signifi cant number 

(over min_sup) of users in the previous user group 
identifi ed by the pattern; if not, it is probably not worth 
to recommend.

2. The next-stop should occur after the pattern in 
the previous user route, otherwise the system will 
recommend the active user to go backward.

3. The next-stop should not be too far (less than maximal_
distance) from the last stop of the pattern, since the 
active user would not take it if it is too far from where 
he/she is at right now.

If such a next-stop can be found, then appending this 
new stop to the pattern will produce a new pattern, as it 
satisfies all requirements of route patterns. It is a popular 
sub-sequence occurs in a significant number of existing 
routes and the distance between every adjacent stop does 
not exceed maximal_distance. Being a route pattern, it will 
be discovered by the sequential pattern mining process. 
Therefore we can exploit the route patterns to generate 
recommendations by converting them into recommendation 
rules. For a popular route pattern 〈si1 si2 . . .  sim〉 ,  a 
recommendation rule can be generated as follows:

  (2)

The antecedent 〈si1 si2 ... si(m-1)〉 is also termed as the left 
hand side of the rule denoted as LHS(rule), is to be used as 
the pattern to match with the active user’s route; and the 
consequent sim is termed as the right hand side of the rule 
and is denoted as RHS(rule), is the next stop the system is 
going to recommend to the active user.
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Given an active user route routeuserID = 〈sj1 sj2 ... 
sjn〉, the rule = 〈si1 si2 ... si(m-1)〉 → sim is said to match or 
applicable to routeuserID if origin(rule) ⊆ routeuserID and si(m-

1) = sjn, where origin is a function that returns the original 
route pattern for any given rule. The additional constraint 
si(m-1) = sjn is necessary to avoid making out-of-context 
recommendations. For example, A, B, C and D are four 
consecutive stops on a street, with A on one end and D on 
the other. A user has visited 〈A C D〉. Without the additional 
constraint, his route 〈A C D〉 matches the rule 〈A〉 → 〈B〉, 
therefore the system will suggest B as the next-stop, which 
makes no sense to the user, as the user has clearly passed B.

As sequential mining methods will return all popular 
patterns, popular 1-sequences (sequences of length 1) 
will be among the discovered pattern as well. However, 
the above definition excludes popular 1-sequence from 
recommendation rules generation. If the only one item 
in the 1-sequence is used as recommendation, then there 
leaves nothing for the system to infer connections between 
the active user and the popular 1-sequences. The system 
will be unable to make any recommendation at all.

This is a well-known issue called cold start, common 
among recommender systems. A simple solution is to 
recommend the stops in those popular 1-sequences which 
are within the maximal_distance radius to the active user’s 
current location. If none can be found, then the system 
should refrain from making any recommendations.

For an active user, there could be a number of matching 
route patterns, leading to multiple recommendations. 
This is most common when the user starts his/her tour. 
To avoid bombarding the user with too many options, the 
system should rank the recommendations to help user to 
choose. In other words, the purpose of the ranking is to 
estimate how well the active user would like each of the 
recommendations, which is in turn determined by how 
strong a connection exists between the rule that generates 
this recommendation and the active user.

The connection is established between a rule (take ruleA 
as an example here) and the active user, when LHS(ruleA) 
is contained in the active user’s route pattern. As such, the 
length of LHS(ruleA) is a good indicator to represent how 
similar ruleA is with the active user route pattern, i.e., the 
longer the LHS(ruleA) is, the more traits of ruleA occurs in 
the active user route pattern, the stronger the connection 
is therefore the more like-minded the active users is to the 
group of previous users that generate ruleA. We design a 
function length which returns any sequence’s length, i.e., 
length (LHS(ruleA)). 

The recommendability of a rule can be measured by the 
similarity between the rule’s LHS and the active user route 
pattern. Given a rulei and routeuserID, the similarity can be 
defined as:

� (3)

However, LHS-length-based simularity may not be 
enough to rank the rules. For example, at the beginning 
of a tour, when the active user has only visited one place, 
all the rules available for matching will all have their 
LHS being one-element long. To tell which rule is more 
recommendable than the others when they have the same 
LHS-length, we can turn to the support of the route pattern 
behind each rule (cf. Equation 1). However, the support is 
only a measurement of how popular this rule is among the 
previous users. It tells nothing about the connection with 
the current active user. As such, a concept of confidence 
is borrowed from the idea of association rules [1], and is 
defined as:

	 � (4)

By definition, the confidence predicts the probability 
that an active user will take the recommendation of a 
matching rule. Obviously the confidence is a more relevant 
measurement over the support. However, a confidence-
only approach will likely produce unpopular result of high 
confidence. To balance the measurement, another concept 
of strength is borrowed from [15] and is defined as:

	 � (5)

Combining the strength and similarity, the general 
recommendability of a rulei, can be defined as:

	 � (6)

where the parameter bias_similarity allows the user to give 
bias toward similarity or strength.

7   System Architecture and Example

The operation flow of the system has three phases -- 
tracking, mining and recommendation. Accordingly, the 
system is logically divided into three modules, as illustrated 
in the following Figure 4.
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Figure 4 System Architecture

The task for the tracking module is to monitor and 
record the user's behavior data and preprocess them into 
routing data, which is its output. The input of the mining 
module is completed routes. Its task is to collect such 
completed routes from all handheld devices and mine them 
for popular patterns. These patterns will be used to generate 
recommendation rules. The rules are then the output of the 
mining module. At the same time these rules are one of the 
inputs to the recommendation module. The other input is 
the current routing data at the moment of user's request. 
The task of this module is to produce recommendation 
by running the current user routing data through a set of 
recommendation rules.

We use a complete example here to show how the three 
phases work with sample data. Figure 5 marks a number of 
sample tour routes on the map to help us demonstrating the 
mining process for popular route patterns. Table 1 lists the 
route database.

Figure 5 Sample Tour Routes

Table 1 Routes Database

User Id Routes
1 〈J G C A E 〉
2 〈H G A D E 〉
3 〈B E A C 〉

4 〈B D A C 〉

5 〈B G A〉

Suppose the minimal support is 40%, i.e., any route 
pattern has to have at least 2 occurrences in the above 
database to be counted as popular and set maximal_distance 
to 1.5km. Following the algorithm, we fi rst look for popular 
1-sequence patterns as Table 2 lists, i.e., route patterns of 
1-stop long that have over minimal support.

Table 2 Popular 1-sequence Patterns

1-sequence Patterns Support
A 100%
B   60%
C   60%
D   40%
E   60%
G   60%

Then we generate candidate 2-sequence patterns by 
self-joining the 1-sequence patterns and eliminate those 
patterns whose support values are less than the minimal 
support. Following the same process, we can fi nd the only 
popular 3-sequence pattern. At this point, we have found all 
popular route patterns in the database as Table 3 lists.

Table 3 Popular Route Patterns

1-sequence
Patterns

2-sequence
Patterns

3-sequence
Patterns

A A C
A E

B B A B A C
B C

G G A G A E
G E

By defi nition, all 1-sequence patterns cannot be turned 
into recommendation rules and therefore discarded. The 
rest of the patterns can generate the set of recommendation 
rules as Table 4 lists.
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Table 4 Recommendation Rules

Rule ID Recommendation Rules
1 〈G A〉 → E
2 〈G〉 → A
3 〈G〉 → E
4 〈A〉 → E
5 〈B〉 → C
6 〈A〉 → C
7 〈B A〉 → C

With the set of recommendation rules, we are ready 
to make recommendations. Suppose Maz, has started his 
tour today. So far he has visited a number of places: 〈J G 
C 〉, and he is just leaving from A. He’s having a good time, 
quite satisfied with the recommendations. So he pulls out 
his built-in GPS mobile phone, and checks what can be the 
next interesting stop.

Table 5 Array of Recommendation Rules

� Rule
Stop

#1 #2 #3 #4 #5 #6 #7

A -2 -1 -1 -2
B -1 1
G 1 -1 -1

In order to make the next-stop recommendation to 
Maz, our system first transforms the recommendation rules 
into Table 5.

Maz’s route before reaching A was 〈J G C 〉, the system 
has been matching his route against the recommendation_
rules on every location he visited. Without going into too 
much detail, Table 6 lists the values of the cursor positions 
at this moment. The cursor value is counting from 1, for 
example, G in 〈G C A〉 makes the cursor value be 1 and 
C makes the cursor value be 2. However, please note the 
cursor value will be a negative number if the place locates 
at the end of a sequence, e.g., A in 〈G C A〉.

Table 6 Array of cursor Position

Rule ID LHS(rulei)
Cursor Value of
〈J G C 〉 in rulei

1 〈G A〉 1
2 〈G 〉 1
3 〈G 〉 1
4 〈A〉 0
5 〈B〉 0
6 〈A〉 0
7 〈B A〉 0

As Maz is leaving A ,  the system consults the 
recommend-ation_rules table (i.e., Table 4), and obtains the 
list of rules containing A, i.e., rule #1, #4, #6 and #7. By 
joining Table 4 and Table 6 on Rule ID, we get Table 7.

Table 7 A Joined Table to See Which Rules Can Be Ignored

Rule ID
Cursor
Value

Position
of A

|Position
of A|

1 1 -2 2
2 1
3 1
4 0 -1 1
5 0
6 0 -1 1
7 0 -2 2

Since we are looking for rules whose LHSs end with A; 
and rule #2, #3 and #5 can be removed due to the fact that 
none of them contains A. The cursor value of A in rule #1 
is -2, the absolute value of which is greater than the cursor 
value for 〈J G C 〉 by exactly one. So rule #1 completely 
matches Maz’s route. The same goes with rule #4 and #6. 
Therefore rule #1, #4 and #6 are both eligible to make 
recommendations to Maz.

Now it’s time to measure the recommendability of 
these eligible rules. Suppose Maz has set the system to 
recommend only the top one choice, and set bias_similarity 
to 0.7. Table 8 lists the similarity, the strength, and the 
recommendability of all eligible rules.

Table 8 The Similarity, Strength and Recommendability of the 
Eligible Rules

Rule ID similarity strength recommendability
1 0.5 0.27 0.43
4 0.25 0.6 0.35
6 0.25 0.16 0.22

As a result, 〈G A〉 → E (recommendability = 0.43) is 
more recommendable than 〈A〉 → E (recommendability = 
0.35) and then 〈A〉 → C (recommendability = 0.22). We 
have E, E and C as recommendation candidates, which 
can be further reduced to E and C. As Maz only wants the 
top one choice in the candidate list, the system chooses to 
recommend Maz E as his next stop since E has much higher 
recommendability value.

8   Conclusions

This research studies a novel problem -- route 
recommendation based on behavior patterns. Based on 
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the observation that user’s routing behavior is a sequential 
decision making process, the concept of sequential patterns 
is being used to define behavior patterns. As a result, 
sequential pattern mining methods are used to extract 
popular behavior patterns, which are then turned into a 
set of recommendation rules. Given an active user, the 
system will first find out which rules are applicable to 
the user, sort the rules according to a ranking scheme and 
finally present the top-n highest-ranking rules’ RHS as the 
recommendations to the user. 

We have already done the simulation test to verify the 
effectiveness of the proposed method. In the next step, we 
plan to build the application on the mobile phone and do the 
pilot experiment. The proposed recommendation method 
can be used in other application domains, e.g., sightseeing, 
museum visiting, shopping and cultural and historical spots 
learning, as long as the behavior data is a sequential one.

In  the  exper iment ,  we  p lan  to  no t  on ly  use 
questionnaire to verify if the recommendation fits the users’ 
requirements, but also to analyze the recommendations 
and the user’s followed behavior to see if the user 
appreciates the recommended next-stops. We always think 
that a recommendation system should only provide users 
suggestions rather than force them to comply.

At last, the proposed method currently only uses time 
gap and minimal range in distance to deal with noisy data. 
In the future research, we would consider to use Wavelet 
and other DSP (Digital Signal Processing) methodologies 
to filter the noise out. 
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