
171Next-Stop Recommendation to Travelers According to Their Sequential Wandering Behaviors

Next-Stop Recommendation to Travelers According to Their Sequential
Wandering Behaviors

Dirksen Liu, Maiga Chang
School of Computing and Information Systems, Athabasca University, Canada

dirksen@gmail.com, maiga@ms2.hinet.net

Abstract

This paper proposes a novel solution of route
recommendation which makes recommendations of
potential next-stops to the users based on their previous
wandering behaviors. The proposed recommendation
method matches the user’s current wandering behavior with
the set of popular route patterns. Sequential pattern mining
methods are used to extract the popular route patterns
from a large set of historical route database collected from
previous users. A complete example is used to verify the
effectiveness of the proposed solution.

Keywords:	 Sequential, Location-based service, Route
pattern, Data mining, Mobile, Casual wandering.

1 Introduction

Planning a route between two any given locations is
the main feature of many navigational applications: such
as the ever-popular portable/vehicle GPS navigational
devices. These applications take route planning as a
classical problem of finding the shortest path between two
vertexes on a graph. There are many shortest-path finding
algorithms, such as Dijkstra’s algorithm [4], and its variants
A* search algorithm [7], D* search algorithm [13], etc.
which can produce route plans efficiently. However, not
every case of traveling involves only one destination. This
research looks into a different kind of traveling behavior
that involves multiple destinations -- casual wandering.

This research is motivated by the need to make
recommendations for casual wanderers, who travels
between a series of locations attracting to them. Examples
of casual wandering behavior can be found in small touring
activities such as museum going, gallery visiting, zoo
exploring, or as big as an excursion in a national park, or
a day trip in a city tour. Travelers in these cases are more
concerned about visiting the right places -- the places
they like. On the other hand, they care less about how
to minimize the time or distance of traveling, although
reasonable economy is expected (such as no wasteful
traveling of zigzagging).

The basic strategy of making route recommendation is
to extract popular route patterns from a large route database
and recommend the route patterns whose prefixes are most

similar to the active user's current route. The underlying
assumption of this strategy is that those who agreed in the
past tend to agree again in the future, so if the active user's
route is similar to the prefix of a popular route pattern, then
there's a good chance the active user will follow the rest of
the popular route pattern.

The goal of this research is to (1) identify an approach
to extract popular route patterns from a historical route
database and (2) to devise a method of finding the top-N
recommendations via popular route pattern most similar to
the active user's route, effectively and efficiently.

2 Recommender System in Sequential
Context

Making recommendations is also the main feature
of a large variety of applications called recommender
systems which are achieving widespread success in
E-Commerce nowadays. Examples of such applications
include recommending books, CDs and other products
at Amazon.com [10], movies by MovieLens [11], pre-
detect fraud report by accounting [8] and news at VERSIFI
Technologies [3].

Recommender systems are usually classified into
two categories, based on how recommendations are made
[2]: content-based recommendations and collaborative
recommendations. Content-based systems recommend
items similar to those that a user liked in the past [9] while
collaborative recommender systems (or collaborative
filtering systems) try to predict the preference of items
for a particular user based on the items previously rated
by other users [5]. Typical examples include the book
recommendation system from Amazon, the PHOAKS
system that helps people find relevant information on the
WWW [14] and the Jester system that recommends jokes [6].

The method being proposed to solve the route
recommendation problem is inspired by the collaborative
methods, in that it also tries to identify the previous users
that share the same choice pattern with the active user, and
then recommend the next choice made by those previous
users to the active user. However, most of the current
collaborative recommender systems do not consider the
order of choices made by the users, while sequential order
is a crucial factor in the route recommendation problem.
This issue will be discussed in details in Section 3.

*Corresponding author: Maiga Chang; E-mail: maiga@ms2.hinet.net

15-JIT-IWC-06.indd 171 2011/1/24 下午 03:58:09

Journal of Internet Technology Volume 12 (2011) No.1172

There are a number of recommender systems that take
the order of user’s choices into account. Shani, Brafman
and Heckerman (2005) view the recommendation process
as a sequential decision problem and propose using
Markov decision processes (a well-known stochastic
technique for modeling sequential decisions) for generating
recommendations [12]. Tseng and Lin (2006) use n-gram
(another derivative from the Markov chain model) based
sequential pattern mining techniques to mine the mobile
user's web usage sequence, aligned with the location
sequence where the user uses the web [15]. Although their
objective is to predict the next user request and the next
location, to reduce mobile web surfi ng latency, their work is
strongly related the recommender system. After all, making
recommendations is to predict what users like.

3 Scenario of Bar Tour Guide

The motivation of this research is to find a solution
for the Bar Tour Guide application. The main objective
of the application is to recommend bar tour routes to its
users. A typical scenario of the Bar Tour Guide application
usage is as follows. The user carries the Bar Tour Guide
handheld device as setting out on a tour. The device
constantly monitors the user's routing activities. The user
will find the first bar by himself/herself (the application
will not make recommendation until the user has made
the first choice; more discussion later in the chapter). As
soon as the user fi nishes the drinking and is stepping out of
the fi rst bar, the Bar Tour Guide will start the calculation,
and presents a list of top-N next popular bar that are most
likely favored by the user. The user may or may not take
the recommendation, so the next time the user issues a new
request for recommendation, the system will recalculate the
recommendations based on the most up-to-date user route.

For example, Maz is bar touring in downtown Toronto
(see Figure 1 for a map of some bars and pubs in that area,
and Maz’s route on the map). He fi rst visits G, then A, and
now he wonders which one to go next. So he pulls out his
GPS iPhone, which is running the Bar Tour Guide program.
The system scans a list of popular bar tour routes, and
discovers that many previous bar tour goers, who drank
at G then A, would pick E as the next hop. Therefore, E
becomes the recommendation for Maz.

The problem as how to get from one stop to the next
in the route on the street level can be addressed with
conventional navigational tools, and thus is out of the scope
of this paper.

Figure 1 Bar Touring in Downtown Toronto

4 Issues Needed to Solve

First, let us defi ne what a route is. Since we are mostly
concerned about the choices made by the bar tour goers, so
a route can be represented as an ordered list of locations.
We are also only interested in a number of specifi c types of
locations, referred to as signifi cant locations (in this case,
drinking establishments). In other words, if the user drops
into a café, a flower shop, during his/her bar tour, those
stops will not be recorded in his/her route.

Formally, signifi cant locations Λ is a set of predefi ned
geo positions of significant interest, such as the geo
positions of all bars in a city in the case of bar touring. The
member of Λ is denoted as a 3-tuple (latitude, longitude,
name). A user route routeuserID is an ordered list of locations,
denoted by the form 〈λ 1 λ 2 … λ n〉, where λ j Ì Λ. A sequence
with length k is referred to as a k-sequence.

The objective of any recommendation problem is to
predict what the user likes. The route recommendation
problem, presented by the Bar Tour Guide application, is
unique from other conventional recommender system, in
that it needs to predict not only what the user likes, but also
in what order.

Many recommender systems, especially those that
follow the collaborative approach, exploit the observation
that like-minded people behave similarly, and thus often
make similar decisions again. The basic strategy of the
solution being proposed follows the same line of thinking.
It takes the following three steps:
1. Look up recurring behavior patterns as what the previous

users have chosen to visit, and in what order.
2. Compare the current active user’s behavior against

the patterns discovered in step one, identify those
patterns that matches the current user. Obviously the
previous users exhibited such behavior patterns share
common preference profi les with the active user, hence

15-JIT-IWC-06.indd 172 2011/1/24 下午 03:58:09

173Next-Stop Recommendation to Travelers According to Their Sequential Wandering Behaviors

what locations they visited next can be presented as
recommendations as those locations would be very likely
preferred by the active user as well.

3. There is often more than one recommendation. To avoid
bombarding the active user with too many options, the
system should rank each recommendation according to
some certain scheme, to help the user to decide which
one to take.

Given a database Θ of routes, and an active user route
routeuserID, and according to the three-step strategy, the route
recommendation problem can be divided into three research
issues:
1. how to extract popular route patterns from the database Θ ;
2. how to generate recommendations from the popular route

patterns; and,
3. how to rank the relevancy of the recommendations to the

active user given his/her route, routeuserID?

5 Sequential Routing Patterns

Most current recommender systems consider patterns
as sets of commonly chosen items. The order of the items
in a set is deemed to be irrelevant. Non-sequential pattern
based recommender systems are very popular in product
recommendation, such as books, music, movies, etc. In
these cases, the involved effort to acquire such products
makes little influence on the user’s decision making and
thus often ignored.

The case is different for route recommendation because
there is a cost of traveling incurred on the users moving
from one location to the next. This cost will add up as
the users travel through a number of locations, and thus
the total traveling cost is determined by the visiting order
of these locations. As such, users are no longer making
decisions solely based on what they like, but also the cost
involved in traveling as well. More precisely, the thinking
process now becomes:
1. What do I like to visit next?
2. Is it too far? Do I like it so much that I’m willing to

travel that far?
3. Is it in my general travel direction? (to keep the total

cost down, a common strategy is to move in a constant
direction)

Without considering the sequential order, the pattern
will not be able to capture the decision making process
behind the user’s behavior, and thus will failed to fi nd the
real like-minded users and present recommendations that’s
out of context.

Figure 2 illustrates a typical case where the simple
preference-oriented recommender systems would have
failed. Two users have been traversing the same set of
locations 〈B C D E 〉, but in opposite directions. The simple
preference-oriented recommender systems will consider

the two users as being like-minded, and will recommend
choice of the next destination of each user to the other (i.e.,
A to User #1, and F to User #2), which does not make sense
to either given their context.

Figure 2 Preference-Oriented vs. Sequential Method

In summary, route patterns must be sequential. Given
routes are sequences, route patterns should be common sub-
sequences of the original routes.

What is sub-sequence? Shani, Brafman and Heckerman
(2005) and Tseng and Lin (2006) both seek to extract
correlation between users by examining the sub-sequences
of the users’ action sequences in specific problems [12]
[15]. Their methods are both based on Markov chain
models, more specifically the n-gram model, which is a
type of probabilistic model for predicting the next item in
a sequence. An n-gram is a sub-sequence of n items from a
given sequence. Formally, a sequence Si’ = 〈si1’ si2’ ... sin’ 〉
is said to be a sub-sequence of an original sequence Si = 〈si1
si2 ... sim〉, where n ≤ m, if there exists a strictly increasing
sequence of indices, namely j1 < j2 < ...< jn, such that si1’ =
sij1, si2’ = sij2, …, sin’ = sijn.

Sub-sequence is an exact fragment of the original
sequence. However, focusing only on local fragments, we
would loose sight of patterns that span non-consecutively
across the original sequences. For example, 〈A B C 〉 and
〈A D C 〉 are routes that do not share any consecutive sub-
sequences and thus will be dismissed by any Markov chain
model as not having any connections between them. And
yet that’s not true, as they both contain A and C, and in
the same order. That indicates there is some connection
between them. The two users who generated these two
routes share something in common. In this case, 〈A C 〉 is a
common pattern occurred in both routes.

Sequential patterns that occur non-consecutively in
original sequences are better media to capture the common
features of those sequences. Figure 3 demonstrates the
power of non-consecutive sequential patterns. It depicts
two user routes. User 1 starts from A, and after visiting
an arbitrary number of locations, D, E, and F, User 1
arrives at G. User 2 starts from H, and then D, E, F, I
consecutively. Obviously their routes have a common
sequence fragment 〈D E F 〉. In the example, there are two

15-JIT-IWC-06.indd 173 2011/1/24 下午 03:58:09

Journal of Internet Technology Volume 12 (2011) No.1174

routes sharing a common fragment 〈D E F 〉. Since equal
number of users visit 〈D E F 〉, but end up in different
destination, the Markov chain model cannot determine the
probability difference between the two routes. If we expand
our visual scope to the entire bodies of both routes, we can
then discover the correlations between H and I, A and G.

Figure 3 Sequence Fragments vs. Sequential Patterns

The relaxation of the consecutiveness constraint gives
rise to a new issue. Suppose A and G are two locations
so far apart that no users who are currently visiting A,
would make G as their next destination. Here User 1’s
route route1 = 〈A …. G 〉 starts from A, passes a number of
other locations and fi nally ends at G as Figure 3 shows. By
defi nition, 〈A G 〉 is a sub-sequence of route1, and thus has
a chance of becoming a route pattern. This is in contrast
to the fact that no one would travel directly from A to G,
and thus not a faithful refl ection of the reality. As such, a
constraint on distance between adjacent elements is needed
to ensure the route pattern itself is a possible route. The
upper limit of the distance between adjacent elements of a
pattern is a user-defi ned parameter, referred to as maximal_
distance.

Summarizing the above discussion, a routing
pattern can be defined as a recurring sub-sequence with
significant frequency in the routing sequence database.
The significance of a routing pattern is measured by its
support. Given a database Θ = {S1, S2, ..., SN} that contains
N sequences, the support of a routing pattern is defi ned as

 (1)

A routing pattern is said to be popular, or frequent,
if its frequency of occurrences in the database is no less
than a certain user-defined minimum support (or referred
to as the min_sup). For example, in a database which has
the following three routes: 〈A B C D〉, 〈E B C F 〉, 〈H I J 〉,
with minimum support of 50%, the route pattern 〈B〉, 〈C 〉,
〈B C 〉 are all popular since they appear two times out of 3.
A routing pattern is said to be maximal, if it is not a sub-

sequence of any other popular routing patterns. In the above
example, 〈B C 〉 are maximal, while 〈B〉, 〈C 〉 are not.

6 Recommendation Rules

After we find the patterns, we need to connect the
active user with previous users through route pattern
matching and generate route recommendations from the
matching route patterns.

The solution to the fi rst task is straightforward. Since a
number of previous users are said to be like-minded if their
routes contain the same route pattern, then in the same line
of thought, an active user whose route also contains this
pattern will have a strong connection with these users as
well. When a route pattern is found contained in an active
user route, it is said to be a match to the active user route.

With a number of previous user found to be like-
minded to the active user, the next step is to find out
suitable next-stops for recommendations among those
visited by this group of previous users, while not yet visited
by the active user. More importantly, the suitableness of a
next-stop follows these criteria:
1. The next-stop should be visited by a signifi cant number

(over min_sup) of users in the previous user group
identifi ed by the pattern; if not, it is probably not worth
to recommend.

2. The next-stop should occur after the pattern in
the previous user route, otherwise the system will
recommend the active user to go backward.

3. The next-stop should not be too far (less than maximal_
distance) from the last stop of the pattern, since the
active user would not take it if it is too far from where
he/she is at right now.

If such a next-stop can be found, then appending this
new stop to the pattern will produce a new pattern, as it
satisfies all requirements of route patterns. It is a popular
sub-sequence occurs in a significant number of existing
routes and the distance between every adjacent stop does
not exceed maximal_distance. Being a route pattern, it will
be discovered by the sequential pattern mining process.
Therefore we can exploit the route patterns to generate
recommendations by converting them into recommendation
rules. For a popular route pattern 〈si1 si2 . . . sim〉 , a
recommendation rule can be generated as follows:

 (2)

The antecedent 〈si1 si2 ... si(m-1)〉 is also termed as the left
hand side of the rule denoted as LHS(rule), is to be used as
the pattern to match with the active user’s route; and the
consequent sim is termed as the right hand side of the rule
and is denoted as RHS(rule), is the next stop the system is
going to recommend to the active user.

15-JIT-IWC-06.indd 174 2011/1/24 下午 03:58:10

175Next-Stop Recommendation to Travelers According to Their Sequential Wandering Behaviors

Given an active user route routeuserID = 〈sj1 sj2 ...
sjn〉, the rule = 〈si1 si2 ... si(m-1)〉 → sim is said to match or
applicable to routeuserID if origin(rule) ⊆ routeuserID and si(m-

1) = sjn, where origin is a function that returns the original
route pattern for any given rule. The additional constraint
si(m-1) = sjn is necessary to avoid making out-of-context
recommendations. For example, A, B, C and D are four
consecutive stops on a street, with A on one end and D on
the other. A user has visited 〈A C D〉. Without the additional
constraint, his route 〈A C D〉 matches the rule 〈A〉 → 〈B〉,
therefore the system will suggest B as the next-stop, which
makes no sense to the user, as the user has clearly passed B.

As sequential mining methods will return all popular
patterns, popular 1-sequences (sequences of length 1)
will be among the discovered pattern as well. However,
the above definition excludes popular 1-sequence from
recommendation rules generation. If the only one item
in the 1-sequence is used as recommendation, then there
leaves nothing for the system to infer connections between
the active user and the popular 1-sequences. The system
will be unable to make any recommendation at all.

This is a well-known issue called cold start, common
among recommender systems. A simple solution is to
recommend the stops in those popular 1-sequences which
are within the maximal_distance radius to the active user’s
current location. If none can be found, then the system
should refrain from making any recommendations.

For an active user, there could be a number of matching
route patterns, leading to multiple recommendations.
This is most common when the user starts his/her tour.
To avoid bombarding the user with too many options, the
system should rank the recommendations to help user to
choose. In other words, the purpose of the ranking is to
estimate how well the active user would like each of the
recommendations, which is in turn determined by how
strong a connection exists between the rule that generates
this recommendation and the active user.

The connection is established between a rule (take ruleA
as an example here) and the active user, when LHS(ruleA)
is contained in the active user’s route pattern. As such, the
length of LHS(ruleA) is a good indicator to represent how
similar ruleA is with the active user route pattern, i.e., the
longer the LHS(ruleA) is, the more traits of ruleA occurs in
the active user route pattern, the stronger the connection
is therefore the more like-minded the active users is to the
group of previous users that generate ruleA. We design a
function length which returns any sequence’s length, i.e.,
length (LHS(ruleA)).

The recommendability of a rule can be measured by the
similarity between the rule’s LHS and the active user route
pattern. Given a rulei and routeuserID, the similarity can be
defined as:

� (3)

However, LHS-length-based simularity may not be
enough to rank the rules. For example, at the beginning
of a tour, when the active user has only visited one place,
all the rules available for matching will all have their
LHS being one-element long. To tell which rule is more
recommendable than the others when they have the same
LHS-length, we can turn to the support of the route pattern
behind each rule (cf. Equation 1). However, the support is
only a measurement of how popular this rule is among the
previous users. It tells nothing about the connection with
the current active user. As such, a concept of confidence
is borrowed from the idea of association rules [1], and is
defined as:

	 � (4)

By definition, the confidence predicts the probability
that an active user will take the recommendation of a
matching rule. Obviously the confidence is a more relevant
measurement over the support. However, a confidence-
only approach will likely produce unpopular result of high
confidence. To balance the measurement, another concept
of strength is borrowed from [15] and is defined as:

	 � (5)

Combining the strength and similarity, the general
recommendability of a rulei, can be defined as:

	 � (6)

where the parameter bias_similarity allows the user to give
bias toward similarity or strength.

7 System Architecture and Example

The operation flow of the system has three phases --
tracking, mining and recommendation. Accordingly, the
system is logically divided into three modules, as illustrated
in the following Figure 4.

15-JIT-IWC-06.indd 175 2011/1/24 下午 03:58:11

Journal of Internet Technology Volume 12 (2011) No.1176

Figure 4 System Architecture

The task for the tracking module is to monitor and
record the user's behavior data and preprocess them into
routing data, which is its output. The input of the mining
module is completed routes. Its task is to collect such
completed routes from all handheld devices and mine them
for popular patterns. These patterns will be used to generate
recommendation rules. The rules are then the output of the
mining module. At the same time these rules are one of the
inputs to the recommendation module. The other input is
the current routing data at the moment of user's request.
The task of this module is to produce recommendation
by running the current user routing data through a set of
recommendation rules.

We use a complete example here to show how the three
phases work with sample data. Figure 5 marks a number of
sample tour routes on the map to help us demonstrating the
mining process for popular route patterns. Table 1 lists the
route database.

Figure 5 Sample Tour Routes

Table 1 Routes Database

User Id Routes
1 〈J G C A E 〉
2 〈H G A D E 〉
3 〈B E A C 〉

4 〈B D A C 〉

5 〈B G A〉

Suppose the minimal support is 40%, i.e., any route
pattern has to have at least 2 occurrences in the above
database to be counted as popular and set maximal_distance
to 1.5km. Following the algorithm, we fi rst look for popular
1-sequence patterns as Table 2 lists, i.e., route patterns of
1-stop long that have over minimal support.

Table 2 Popular 1-sequence Patterns

1-sequence Patterns Support
A 100%
B 60%
C 60%
D 40%
E 60%
G 60%

Then we generate candidate 2-sequence patterns by
self-joining the 1-sequence patterns and eliminate those
patterns whose support values are less than the minimal
support. Following the same process, we can fi nd the only
popular 3-sequence pattern. At this point, we have found all
popular route patterns in the database as Table 3 lists.

Table 3 Popular Route Patterns

1-sequence
Patterns

2-sequence
Patterns

3-sequence
Patterns

A A C
A E

B B A B A C
B C

G G A G A E
G E

By defi nition, all 1-sequence patterns cannot be turned
into recommendation rules and therefore discarded. The
rest of the patterns can generate the set of recommendation
rules as Table 4 lists.

15-JIT-IWC-06.indd 176 2011/1/24 下午 03:58:12

177Next-Stop Recommendation to Travelers According to Their Sequential Wandering Behaviors

Table 4 Recommendation Rules

Rule ID Recommendation Rules
1 〈G A〉 → E
2 〈G〉 → A
3 〈G〉 → E
4 〈A〉 → E
5 〈B〉 → C
6 〈A〉 → C
7 〈B A〉 → C

With the set of recommendation rules, we are ready
to make recommendations. Suppose Maz, has started his
tour today. So far he has visited a number of places: 〈J G
C 〉, and he is just leaving from A. He’s having a good time,
quite satisfied with the recommendations. So he pulls out
his built-in GPS mobile phone, and checks what can be the
next interesting stop.

Table 5 Array of Recommendation Rules

� Rule
Stop

#1 #2 #3 #4 #5 #6 #7

A -2 -1 -1 -2
B -1 1
G 1 -1 -1

In order to make the next-stop recommendation to
Maz, our system first transforms the recommendation rules
into Table 5.

Maz’s route before reaching A was 〈J G C 〉, the system
has been matching his route against the recommendation_
rules on every location he visited. Without going into too
much detail, Table 6 lists the values of the cursor positions
at this moment. The cursor value is counting from 1, for
example, G in 〈G C A〉 makes the cursor value be 1 and
C makes the cursor value be 2. However, please note the
cursor value will be a negative number if the place locates
at the end of a sequence, e.g., A in 〈G C A〉.

Table 6 Array of cursor Position

Rule ID LHS(rulei)
Cursor Value of
〈J G C 〉 in rulei

1 〈G A〉 1
2 〈G 〉 1
3 〈G 〉 1
4 〈A〉 0
5 〈B〉 0
6 〈A〉 0
7 〈B A〉 0

As Maz is leaving A , the system consults the
recommend-ation_rules table (i.e., Table 4), and obtains the
list of rules containing A, i.e., rule #1, #4, #6 and #7. By
joining Table 4 and Table 6 on Rule ID, we get Table 7.

Table 7 A Joined Table to See Which Rules Can Be Ignored

Rule ID
Cursor
Value

Position
of A

|Position
of A|

1 1 -2 2
2 1
3 1
4 0 -1 1
5 0
6 0 -1 1
7 0 -2 2

Since we are looking for rules whose LHSs end with A;
and rule #2, #3 and #5 can be removed due to the fact that
none of them contains A. The cursor value of A in rule #1
is -2, the absolute value of which is greater than the cursor
value for 〈J G C 〉 by exactly one. So rule #1 completely
matches Maz’s route. The same goes with rule #4 and #6.
Therefore rule #1, #4 and #6 are both eligible to make
recommendations to Maz.

Now it’s time to measure the recommendability of
these eligible rules. Suppose Maz has set the system to
recommend only the top one choice, and set bias_similarity
to 0.7. Table 8 lists the similarity, the strength, and the
recommendability of all eligible rules.

Table 8 The Similarity, Strength and Recommendability of the
Eligible Rules

Rule ID similarity strength recommendability
1 0.5 0.27 0.43
4 0.25 0.6 0.35
6 0.25 0.16 0.22

As a result, 〈G A〉 → E (recommendability = 0.43) is
more recommendable than 〈A〉 → E (recommendability =
0.35) and then 〈A〉 → C (recommendability = 0.22). We
have E, E and C as recommendation candidates, which
can be further reduced to E and C. As Maz only wants the
top one choice in the candidate list, the system chooses to
recommend Maz E as his next stop since E has much higher
recommendability value.

8 Conclusions

This research studies a novel problem -- route
recommendation based on behavior patterns. Based on

15-JIT-IWC-06.indd 177 2011/1/24 下午 03:58:12

Journal of Internet Technology Volume 12 (2011) No.1178

the observation that user’s routing behavior is a sequential
decision making process, the concept of sequential patterns
is being used to define behavior patterns. As a result,
sequential pattern mining methods are used to extract
popular behavior patterns, which are then turned into a
set of recommendation rules. Given an active user, the
system will first find out which rules are applicable to
the user, sort the rules according to a ranking scheme and
finally present the top-n highest-ranking rules’ RHS as the
recommendations to the user.

We have already done the simulation test to verify the
effectiveness of the proposed method. In the next step, we
plan to build the application on the mobile phone and do the
pilot experiment. The proposed recommendation method
can be used in other application domains, e.g., sightseeing,
museum visiting, shopping and cultural and historical spots
learning, as long as the behavior data is a sequential one.

In the exper iment , we p lan to no t on ly use
questionnaire to verify if the recommendation fits the users’
requirements, but also to analyze the recommendations
and the user’s followed behavior to see if the user
appreciates the recommended next-stops. We always think
that a recommendation system should only provide users
suggestions rather than force them to comply.

At last, the proposed method currently only uses time
gap and minimal range in distance to deal with noisy data.
In the future research, we would consider to use Wavelet
and other DSP (Digital Signal Processing) methodologies
to filter the noise out.

References

[1]	 Rakesh Agrawal and Ramakrishnan Srikant,
Mining Sequential Patterns, Proc. of the Eleventh
International Conference on Data Engineering,
Taipei, Taiwan, March, 1995, pp.3-14.

[2]	 Marko Balabanović and Yoav Shoham, Fab:
Content-Based, Collaborative Recommendation,
Communications of the ACM, Vol.40, 1997, pp.66-72.

[3]	 Daniel Billsus, Clifford A. Brunk, Craig Evans, Brian
Gladish and Michael Pazzani, Adaptive Interfaces
for Ubiquitous Web Access, Communications of the
ACM, Vol.45, 2002, pp.34-38.

[4]	 Edsger Wybe Dijkstra, A Note on Two Problems in
Connexion with Graphs, Numerische Mathematik,
Vol.1, 1959, pp.269-271.

[5]	 David Goldberg, David Nichols, Brian M. Oki and
Douglas Terry, Using Collaborative Filtering to
Weave an Information Tapestry, Communications of
the ACM, Vol.35, 1992, pp.61-70.

[6]	 Ken Goldberg, Theresa Roeder, Dhruv Gupta
and Chris Perkins, Eigentaste: A Constant Time

Collaborative Filtering Algorithm, Information
Retrieval, Vol.4, 2001, pp.133-151.

[7]	 Peter E. Hart, Nils J. Nilsson and Bertram Raphael,
A Formal Basis for the Heuristic Determination of
Minimum Cost Paths, IEEE Transactions on Systems
Science and Cybernetics, Vol.4, 1968, pp.100-107.

[8]	 Yeog Kim, Sang Jin Lee and Jong In Lim, Fraud
Detection for Information Reliability from the
Internet in Forensic Accounting, Journal of Internet
Technology, Vol.11, 2010, pp.323-331.

[9]	 Ken Lang, Newsweeder: Learning to Filter Netnews,
Proc. of the Twelfth International Machine Learning
Conference, Tahoe City, CA, July, 1995, pp.331-339.

[10]	 Greg Linden, Brent Smith and Jeremy York, Amazon.
com Recommendations: Item-to-Item Collaborative
Filtering, IEEE Internet Computing, Vol.7, 2003,
pp.76-80.

[11]	 Bradley N. Miller, Istvan Albert, Shyong K. Lam,
Joseph A. Konstan and John Riedl, MovieLens
Unplugged: Experiences with an Occasionally
Connected Recommender System, Proc. of the
Eighth International Conference on Intelligent User
Interfaces, Miami, FL, January, 2003, pp.263-266.

[12]	 Guy Shani, David Heckerman and Ronen I. Brafman,
An MDP-Based Recommender System, Journal of
Machine Learning Research, Vol.6, 2005, pp.1265-
1295.

[13]	 Anthony Stentz, Optimal and Efficient Path Planning
for Partially-Known Environments, Proc. of the 1994
IEEE International Conference on Robotics and
Automation, San Diego, CA, May, 1994, pp.3310-
3317.

[14]	 Loren Terveen, Will Hill, Brian Amento, David
McDonald and Josh Creter, PHOAKS: A System for
Sharing Recommendations, Communications of the
ACM, Vol.40, 1997, pp.59-62.

[15]	 Vincent S. Tseng and Kawuu W. Lin, Efficient Mining
and Prediction of User Behavior Patterns in Mobile
Web Systems, Information and Software Technology,
Vol.48, 2006, pp.357-369.

Biographies

Dirksen Liu (Decheng Liu) received
the BSc degree in Computer Science
and BA degree in English from South
China University of Tech. in 1997, and
the MSc degree in Information System
from Athabasca University in 2009. He is
currently a software developer working
for InfoBright.com, a column-oriented

DB producer. His interests include data mining, column-
oriented DB and software engineering methodologies.

15-JIT-IWC-06.indd 178 2011/1/24 下午 03:58:13

179Next-Stop Recommendation to Travelers According to Their Sequential Wandering Behaviors

Maiga Chang is Assistant Professor in
the School of Computing Information
and Systems, Athabasca University
(AU), Athabasca, Alberta, Canada.
His researches mainly focus on mobile
learning and ubiquitous learning, museum
E- learn ing , game-based lea rn ing ,

educational robots, learning behavior analysis, data mining,
intelligent agent technology, computational intelligence
in E-learning and mobile healthcare. He is the local chair
of IEEE DIGITEL 2008, general co-chair of Edutainment
2009, and program co-chair of Edutainment 2011. He has
participated in 124 international conferences/workshops
as a Program Committee Member and has (co-)authored
more than 126 book chapters, journal and international
conference papers. In September 2004, he received the
2004 Young Researcher Award in Advanced Learning
Technologies from the IEEE Technical Committee on
Learning Technology (IEEE TCLT). He is a valued IEEE
member for fourteen years and also a member of ACM,
AAAI, INNS, and Phi Tau Phi Scholastic Honor Society.

15-JIT-IWC-06.indd 179 2011/1/24 下午 03:58:13

